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A CUBIC SPLINE APPROXIMATION FOR PROBLEMS

IN FLUID MECHANICS

Stanley G. Rubin* and Randolph A. Graves, Jr.

Langley Research Center

SUMMARY

A cubic spline approximation is presented which is suited for many fluid-mechanics

problems. This procedure provides a high degree of accuracy, even with a nonuniform

mesh, and leads to an accurate treatment of derivative boundary conditions. The trun-

cation errors and stability limitations of several implicit and explicit integration schemes

are presented. For two-dimensional flows, a spline-alternating-direction-implicit (SADI)

method is evaluated. The spline procedure is assessed, and results are presented for the

one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion

equation and the vorticity-stream function system describing the viscous flow in a driven

cavity. Comparisons are made with analytic solutions for the first two problems and

with finite-difference calculations for the cavity flow.

INTRODUCTION

The numerical treatment of many problems in fluid mechanics is complicated by

three conditions: (1) local singular regions where the flow gradients are much larger

than typically found over the remainder of the domain, e.g., in the limit of large Reynolds

number (particular examples of this singular behavior are given by shock waves, bound-

ary and shear layers, entropy layers, etc.); (2) curvilinear boundaries that do not pass

directly through the nodal points of a fixed uniform mesh. (Here, both geometric sur-

faces, as well as discrete shock waves, are referred to as they appear in a numerical

shock fitting procedure with a fixed mesh and moving shock, Moretti, ref. 1); and

(3) derivative boundary conditions as occur for vorticity or pressure (see Roache, ref. 2).

In some cases, coordinate transformations can alleviate the difficulties associated

with conditions (1) and (2), but this generally requires a priori knowledge of the local or

asymptotic flow behavior, which is not always available. Moreover, suitable transfor-

mations are difficult to formulate if multiple shocks or other singular regions appear, if

*Professor of aerospace engineering, Polytechnic Institute of New York,
Farmingdale, N.Y. Work performed as visiting professor at Old Dominion University,
Norfolk, Va.



a number of geometric configurations must be considered simultaneously, or if a singular
region is multilayered, i.e., singular regions within singular regions. Someexamplesof
the latter are the trailing-edge boundary layer (Messiter, ref. 3), the laminar sublayer
within a turbulent boundarylayer (ref. 4), oscillating boundarylayers (Ackerberg, ref. 5),
andcorner boundaryregions (Rubin, ref. 6).

The accuracy of a numerical calculation canbe improved by suitable mesh reduc-
tion or by increasing the order of the truncation error. However,higher order methods
generally require the introduction of additional nodalpoints in the discretization formu-
las, thereby increasing the coupling in the system of algebraic difference equations. For
implicit methodsthe number of nonzeroentries in the inversion matrix is increased so
that the tridiagonal form associatedwith a three-point formulation no longer occurs.
Sincethe very efficient tridiagonal inversion algorithms canno longer be applied, a sig-
nificant increase in computer time results.

Higher order discretizations can also be usedfor accurately representing deriva-
tive boundary conditions (Briley, ref. 7). However, these may be inadequateif the mesh
dimension is too large; i.e., if the local surface gradients are 0(A-l) and the mesh
dimension is 0(_), the accuracy will remain poor regardless of the number of terms
retained in a Taylor series expansion. In manyproblems a surface layer grows from
zero thickness initially to some finite thickness in a steadystate. In the initial stages,
inaccuracy near the boundary can lead to a divergencethat is suppressedonly by an
under-relaxation procedure (Bozemanand Dalton, ref. 8).

Uniform mesh reduction improves accuracy but results in a significant increase in
the number of algebraic difference equationsand is particularly inefficient from the point
of view of computer storage and calculation time. A nonuniform mesh that is adjusted to
reflect the appearanceof singular regions and irregular boundaries shouldbe optimal.
Unfortunately, with a three-point finite-difference approximation the order of the trun-
cation error will be significantly decreasedwith evena moderate variation in the mesh
dimension (Crowder and Dalton, ref. 9). Therefore, the expectedincrease in accuracy
associatedwith mesh reduction is not achieved.

The present paper describes a cubic spline procedure for the solution of second-
order quasi-linear partial differential equationsin one or two spatial dimensions. A
finite-difference discretization is usedfor the marching or time-like direction. Unlike
a finite-element or Galerkin procedure, there are noquadratures to evaluate,and the
coefficient matrix is tridiagonal. Implicit and explicit spline fitting is examinedfor a
one-dimensional Burgers' equation;a spline-alternating-direction-implicit (SADI)pro-
cedure is formulated for two-dimensional flows. The spline approximation is second-
order accurate, evenwith relatively large variations in the mesh, so that singular regions
and irregular boundariescan be consideredwithout loss of accuracy andwith a minimum

L
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of computer storage and time. Moreover, for inviscid flows where the system of differ-

ential equations becomes first order, the spline procedure is third-order accurate with

a nonuniform mesh and of fourth-order accuracy with a uniform mesh. This result is

consistent with the increased accuracy of lower order derivatives in a spline curve fit

(Ahlberg, Nilson, and Walsh in ref. 10). For a uniform mesh, a particular combination

of splines and finite differences results in a fourth-order accurate procedure for viscous

flows as well. The tridiagonal form is maintained.

Since the spline approximation provides a direct relation between the derivatives

and the functional values evaluated at the nodal points, a finite-difference discretization

is unnecessary. Derivative boundary conditions are imposed directly without incurring

large local discretization errors due to inaccurate higher order one-sided difference

approximations. This represents a significant advantage of the spline technique over

conventional finite-difference procedures. Finally, unlike finite-difference or Galerkin

techniques, with a spline approximation there appears to be no particular advantage

gained with the divergence form of the equations. This fact, previously noted by Douglas

and Dupont in reference 11 in their collocation procedure, can prove extremely important

for flow problems where shock waves are captured during the numerical computation.

The spline formulation and the procedure for solving second-order quasi-linear

partial differential equations are reviewed; the truncation errors for second derivatives,

i.e., diffusion, and first derivatives, i.e., convection, are explicitly elucidated; the sta-

bility of explicit, implicit, and combined two-step procedures, with a uniform mesh, is

discussed for a linearized Burgers' equation in one dimension and with the SADI proce-

dure in two dimensions; and the concepts of splines under tension as a smoothing proce-

dure are reviewed. The effects of tension, mesh variation, and divergence form on the

resolution of a spline curve fit are discussed. Also, results are presented for the one-

dimensional nonlinear Burgers' equation, the two-dimensional diffusion equation, and the

viscous flow in a driven cavity. Comparisons are made with exact solutions and finite-

difference solutions where available.

SYMBOLS

a,b end points of interval or dimensions of cavity

ai,bi, ci, di scalar coefficients in equation (10)

c stability coefficient, _ At/h

ei truncation error

3



g(x) initial conditions on velocity

hij,hi,h

h

mesh width, x i - xi_ 1

average mesh width

kij,ki,k

.ti,mi

Li,Mi,P

R

Rc

mesh width, Yi - Yi-1

spline first derivative in y- and x-direction, respectively

spline second derivative in y-, x-, and z-direction, respectively

spline first derivative of u2/2

Reynolds number

cell Reynolds number, _h/v

[

t time

At

Ti,Pi

Tr,Pr

U,V

time step increment

matrices in equation (27)

matrices in SADI stability analysis

velocity in x- and y-direction, respectively

coefficient in linear Burgers' equation

=

U wave speed in Burgers' equation

Vi

x,y,z

xi

Y, Z

4

vector

spatial coordinates

nodal points

normalized coordinates

:=

i ii_!



A i coefficient in spline solution procedure

0,01,02

(7

AT

U

vorticity

transformed coordinate, x - ut

finite-difference scheme (0 for explicit, 1/2 for Crank-Nicolson,

implicit)

eigenvalue

kinematic viscosity

tension factor

spacing factor

fictitious time

fictitious time step increment

amplification factor (see eq. (27))

stream function

w wave number

Superscripts:

n

s

Subscripts:

i,j

N

x,y,z

time step number

fictitious time step number

indices for x- and y-direction, respectively

number of nodes on _,b_ excluding the boundaries

differentiation with respect to time

differentiation with respect to spatial coordinates

1 for



SPLINE FORMULATION

Basic Spline Theory

Consider a mesh with nodal points (knots) x i such that

a=x 0<x 1 <x 2. • • <x N<xN+ l=b

and with

hi=xi -xi-1 > 0

Consider a function u(x) such that at the mesh points x i

u(xi) = u i

The cubic spline is a function SA(u;x ) = SA(x ) which is continuous together with its

first and second derivatives on the interval _,b_, corresponds to a cubic polynomial in

each subinterval xi_ 1 =<x =<xi, and satisfies SA(ui;xi) = u i.

If the function u(x) belongs to C4_,b_, it has been shown that the spline function

SA(X) approximates u(x) at all points in _,b-_ to fourth order in maximum hi. First

and second derivatives of SA(x) approximate u'(x) and u"(x) to third and second

order, respectively. See Ahlberg, Nilson, and Walsh in reference 10 for detailed proofs

of convergence and for a discussion concerning the relationship of this spline approxi-

mation with a mechanical spline.

If S_(x) is cubic on _i_l,Xi_, then

fx _x /S_ (x) = M i_ I("'-C:__ ! + Mi
\ hi /\_/

S TT / -_where M i Atxi).

Integrating twice leads to the useful interpolation formula on _i-l,X_ as follows:

(i)

=

The constants of integration have been evaluated from Sa(x i) = u i and SA(xi_l) = ui_ 1

where SA(x) on _,i+l_ is obtained with i+l replacing i in equation (1).

The unknown derivatives M i are related by enforcing the continuity condition on

S_(x). With S'(xf) = mf on _-1,_ and S_,(x +) = m_- on _,i+_,

m{- = m_ = m i

:A



For i= 1, . . ., N,

hi Mi_ 1 +
6

h i+ hi+l M i+ hi+l Ui+l - u i ui - ui_ 1
3 _ Mi+l - hi+ 1 hi

(2)

Additional relationships obtained from equations (1) and (2), which prove useful later

herein, are listed as follows:

-- 2th- h_+l) 1 3(ui+l-ui) 3(ui-ui-1)
1 mi-1 + + mi + _ mi+l = +

hi i hi+l h2+l h 2

(3)

mi+l - mi =_hi+l (M'l+Mi+ 1) (4)

or

hi hi ui - ui-1 (5)
m i=-_-M i+_-Mi_l + hi

m i- hi+l Mi hi+l Ui+l -u i3 - --6-- Mi+l + (6)hi+l

Therefore, given the values ui, the equations (2) and (3) with appropriate boundary

conditions form a closed system for m i and Mi; and with equation (1) the values

SA(x) can be found at all intermediate locations, Equation (2) or (3) lead to a system

of N equations for the N + 2 unknowns M i or mi, respectively. The additional

two equations are obtained from boundary conditions on m 0 and mN+ 1 or M 0 and

MN+ 1. The resulting tridiagonal system for M i or m i is diagonally dominant and

solved by an efficient inversion algorithm (see Ahlberg, Nilson, and Walsh, ref. 10 or

Keller, ref. 12). Note that if M 0 and MN+ 1 are given so that all M i (i= 1, . .., N)

are determined from equation (2), then m 0 and mN+ 1 are found from equation (5)

or (6). If m 0 and mN+ 1 or Am 0 + BM 0 and CmN+ 1 + DMN+ 1 are prescribed,

then mN+ 1 and m 0 are eliminated with equations (5) and (6) in favor of M N and

MN+ 1 and M 0 and M1, respectively. This gives a relation of the form

and

EM 0 + FM 1 = G(u0,ul)

HM N + JMN+ 1 = K(UN, UN+I)

where A to F, H, and J are constants and G and K are functions of the velocity

u. These two conditions with equation (2) then close the system.



Splines for SolvingPartial Differential Equations

If the values ui are not prescribed but represent the solution of a quasi-linear
second-order partial differential equation

ut = f(U, Ux,Uxx)

then an approximate solution for u i can be obtained by considering the solution of

(ut) i = f(ui,mi,Mi)

where the time derivative is discretized in the usual finite-difference fashion:

un+l - un - (1 - 0)f n + 0f n+l
At

Linear Burgers' equation.- Consider the linear Burgers' equation

U t + uU x = PUxx

where u= u(x,t) and v = v(x,t). Therefore,

u n+l = u n - At[(1-Ol)_pm p + O'utl+lm'n+lq"' ' 2 + At[(1- 02)vnMn + 0,.i-v.n+lM,n+l]j.

With equations (2) and (3) a system of 3N equations for 3(N + 2) unknowns is

obtained; the system can be written as

A _rn+l n+l o xrn+l DiVni'i-1 + BiVi + "i'i+l =

where

A i =

0 0 0"

1 0 hi
-hq

3 1 0

hi2 hi

(7) =

(8)

(9a)

(9b)

Bi=

°t0 °tl _2

1 1 hi + hi+l
_+_ 0hi+ 1 3

3 3 2 2
+

(9c)

' %1



C i =

0 0

i 0 hi+l'

hi+1 6

-__3_3__2_i o
h2+1 hi+1

(9d)

D i = 0 (9e)

0

V i : _i, mi,M_ T (9f)

nO= 1

-n+l
ot 1 = UlUi At

et 2 = -02v_+l At

p0 = 1

n AtP2 = (1-02)v i

(9g)

Initial conditions are specified such that u(x,0) = g(x). If boundary conditions are
. n+l

specified on u(a,t) = rl(t) and u(b,t) = r2(t) , then u_ +1 and UN+ 1 are given as rl(t)

and r2(t) , respectively. With derivative boundary conditions ux(a,t) = sl(t) or

ux(b,t ) = s2(t) , m 0 and raN+ 1 are prescribedas sl(t) and s2(t) , respectively.

From equation(8), u_ +1 is given as a function of M_ +1 and m_ +1 and u_ +1 is

given as a function of m_ +1 and M_+I; from equation (4), m_ +1 is given as a func-

tion of M_ +1, M_+l, and m_ +1.

With these relations for u_ +1 and m_ +1, and with either uB +1 or mS+l spec-

ified, equation (5) or (6) provides a linear relationship between M 0 and M 1. A similar

result can be obtained for M N and MN+ 1. The system is now closed and system (9)

can be solved by the tridiagonal algorithm previously noted. An analogous procedure

determines the appropriate relationships between u 0 and u 1 and u N and UN+ 1 for

9



m0 and mN+1 specified, or m0 and m1 and mN and mN+1 for u0 and UN+1
specified.

The system (9) canbe reducedby substitution of ui and mi as functions of Mi
into a single tridiagonal system for Mi. The resulting equationsfor Mi
(i= 1, . .., N) are, with 0 = 0 1=02,

-.n+l h Mn+l _.n+l
ailvii-1 + _i-'-i + ciivii+l = di (10)

where

a i - hi 0(.5i + 25i_ 1 Yi_ll n+l

6 \ +

C i --_
_ hi+l + 8_25i+I +_5i Yi+l In+l

6 \ 3Ai+ I hi+1Ai+ i/ h

bi hi + hi+l /5i+1 + 26i 26i + 6i-1 )'i 7i I n+l
-- 3 +  zC+i +Ai+lhi+l Aihi]

=(Ui+l - ui ui=ui_l._n+ (1 -0)/- 25imi : 25i+lmi+l+ 26imi - 26i-lmi-1
di \h--i_l+iA-i _-i hiA i / \ hi+lAi+l hiAi

+
Yi+lMi+l - ),iMi

hi+ 1Ai+ 1 7iMi - Yi_lMi_l_) n-

where 26 i=giAt, vi =uiAt,and A i= l+2hfl(si -5i_1)0.

The boundary conditions for M 0 and MN+ 1 are obtained in the same manner as

outlined previously. A tridiagonal relationship similar to equation (10) can also be found

for m n+l or u n+l, although the manipulation is somewhat more tedious.

Nonlinear Burgers' equation.- If the governing equation is nonlinear

U t + UU x = _Uxx

then the spline formulations gives, with 0 = 0 1 = 02,

u n+l = u n + 0 At(-uim i + uiMi) n+l + (1- O) At (-uim i + uiMi) n (11)

If quasi-linearization is used for (uimi) n+l, it is found that

tJ_uimi'n+l n n+l n+l n n n=u imi +u i mi - u imi

10
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andtherefore

+ (1 - O)v n AtM n - (1 -20) Atunm n

(12)

With equation (12) in place of equation (8), the system (9) is of the same form but with the

following modifications:

ot0 = 1 + 0 Atm n

vtI -=0u n At
(13)

"1 -- -(1 - 20)u[ At

Two-dimensional equation.- For equations with two space dimensions such that

a t = f(u,Ux,.Uy,Uxx,Uyy)

a spline-alternating-direction-implicit (SADI) formulation is developed. The two-step

procedure, with quasi-linearization or some other iterative process used for nonlinear

terms, is of the following form: For step 1,

n+l __t /n+--I n+! n+! n)uij = u[_ +--f_uij 2,mij 2,Mij 2,t_,Lij (14a)

and for step 2,

n+½ __t (n+½ n+½ n+l_ on+l _n+1_u_ +1 = uij +-- f\uij ,mij ,Mij ,-ij ,Lij / (14b)

where _ij and Lij are thesplineapproximationsto (Uy)i ] and (Uyy)ij, respectively.

Therefore, in two dimensions with hij = xij - Xi_l, j and kij = Yij - Yi,j-1,

h_jlmi_l,j + 2(h_jl + hill,j)mij + hf+ll,jmi+l,j = 3hf+21,j(Ui+l,j - uij ) + 3hQ2(uij - Ui_l,j)

(15a)

hijMi-l,j + 2(hij + hi+l,j)Mij + hi+l,jMi+l,j _ 6hfJl,j(Ui+l,j - uij ) - 6hQl(uij - Ui_l,j)

and

kfjl_i,j_l + 2(k_ 1+ kf,_+l)t2ij + kf,]+l{i,j+ 1 = 3k_,2+l(Ui,]+ 1 - uij)+ 3k_j2(uij - ui,j-1)

(15b)

(16a)

11



-1
kijLi,j_ 1 + 2(kij + ki,j+l)Lij + ki,j+lLi,j+ 1 = 6ki,j+l(Ui,j+ 1 - uij ) - 6k_l(uij - ui,j_l)

with expressions similar to equation (4) to equation (6) relating mij to Mij and

to Lij.

If cross derivatives such as Uxy appear in the governing system, the spline

approximation for these terms is found from equation (16a), with mij replacing uij

and _ij replacing Qj. The solutions _ij arethe necessary spline fits to Uxy.

Alternatively one could replace uij with tij and mij with r_ij in equation (15a).

The result _ij = rnij should be correct to third order in maximum (hij , kij ).

(16b)

_ij

TRUNCATION ERROR

Theory for Cubic Splines

For interior points, the spatial accuracy of the spline approximation can be

directly estimated from the formulas (2) and (3) or the equivalent two-dimensional rela-

tionships (15a) and (15b). Expanding mij , Mij , and uij in Taylor series and assum-

ing the necessary continuity of derivatives for u(x,y) gives

3-- - + +hij3) (uxxx ?ij

- (uxxxxx)ij 90
36(hi+1,j+ hij)

(17a)

mij = (Ux)i j - (Uxxxx)ij (hi+l,j-hij )_hijhi+l'j_ + 0(h 4) (17b)

Fyfe (ref. 13) has presented similar relations, for constant hi, in his collocation analy-

sis of cubic splines for the solution of two-point boundary value problems.

Therefore, the spline approximation with nonuniform mesh is second-order accu-

rate for Mij and third-order for mij. For a uniform mesh, mij is fourth-order

accurate; and with hij = h,

h 20(h 4)
Mij : (Uxx)i j - (Uxxxx)i j ]-_ + (18)

12



The standard three-point finite-difference approximation provides the following

relationship:

Ui+l,j + Ui_l,j - 2uij h 2 0(h 4)
h2 -- (Uxx)ij+ (Uxxxx)ij +

Therefore, with a uniform mesh

and overall fourth-order accuracy is achieved. A note of warning should be included

here. This approximation should not be used with a nonuniform mesh inasmuch as the

finite-difference approximation introduces a first-order error. Instead, one should

revert back to the second-order accurate approximation as in equation (17a).

(19)

Examples of Truncation Error Using Burgers' Equation

Second-order spatial derivative.- With equation (19) approximating Uxx

model Burgers' equation (7), the system (9), with 0 = 01 = 02, takes the form

_ ,rn+l _.,rn+l 7,.,rn+1 _)ivn + l_.(vn+ + Vn_l)ivi-1 + _I--i + _IVi+l = i i

If

F i=

o o
2h2

0 0 0

0 0 0

in the

(20)

then

i 1 At

h 2

G i =
0

0 0

•_i = Ai - 0Fn+l

^ _n+ 1
_3i = B i + vu i

Ci = Ci- OFn+l

vi at
0 --T-

o 0

0

13



I)i = Di - (1 -O)Gn

Ei = (1 - o)r n

It should be noted that equation (19) for hij = Constant can be written as

1( Mij +ui+l'j+ui-l'j -2uith2 =Mi-l'j+10Mij+Mi+l'J12 = (Uxx)i j + O(h 4) (21a)

or

Mi-l'J - 2Mij + Mi+l'J 0(h 4) (21b)(Uxx)ij = Mij + 12 +

Note that from equations (18) and (21b)

Mi-l'J + Mi+l'J - 2Mij + 0(h2) (22)
(Ux_x)ij = h2

E

2-

This provides a second-order accurate formula for the fourth derivative. A fourth-order

finite-difference method developed by H. O. Kreiss is closely related to the present _-

spline formulation and is outlined in the appendix. =Z

If equation (21b) is used for Uxx, then the governing system is still of form given

by equation (20). The matrices F i and G i are now

12

0

0

(23a)

0 0

Fi= 0 0

0 0

r

m

G i =

0 0 uiA----_t
6

0 0 0

0 0 0

(23b)

This paper is concerned primarily with the standard cubic spline approximation as

given by equations (9).
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First-order temporal derivative.- The truncation error associated with the time

discretization in equation (8) or (12) is identical with that found for a typical finite-

difference formulation. Consider

with

u t = f(ui,mi,Mi)

un+li = uin+ Iofn+l + (1 - o)fn]At

A Taylor series expansion about (n + O)At leads to

For 0 = 1/2, second-order temporal accuracy is achieved. For all other 0 =<0 =<1,

first-order accuracy results.

For the cases of pure convection (v = 0) or pure diffusion (_ -= 0) the spline repre-

sentation for the linear Burgers' equation (7) can be easily transformed into an equivalent

finite-difference form.

Diffusion only.- For. _ - 0 and v = Constant, equation (8) with equation (2) can be

written in the form

(24)

where ¢i = hi/hi+l and _i = v At/h 2. It can be shown directly from equation (24) or

by using equations (17a) and (17b) that the truncation error e i is given by

,+
For e i = 1, the difference equation (24) corresponds to a special case of a more general

formulation proposed by Saul'yev (ref. 14). Papamichael and Whiteman (ref. 15) recog-

nized this correspondence in their cubic spline analysis of the one-dimensional heat con-

duetion equation. They considered only the ease of a uniform mesh.

Convection only.- For v =- 0 and g = Constant, equation (8) with equation (3) can

be written in the form

15



• n+l + _(1 - - + -(_i(l+30C,+l)Ui+l +_i) 30(aiCi+l ci)_un+l (1 30ci)un+ll

where

= (_ill- 3(1- 0)Ci+l]Un+l

At

c i - hi

)_ n+ (_i) + 3(1 - 0)((_ici+ 1 - ci u i

(25)

The truncation error is

ei = utt(_)at - UUxxxx (1 - _'lj_ +

For a uniform mesh ((_i = 1), equation (25) can be written in the form

un+l_ u n

At 0 n%1 n+l+ _ ui+12:h ui un(1 i+l - u+ - 0)

+ [(Ui+l + ui_ 1 -2ui)n+l- (Ui+l + ui_ 1 - 2ui)nl(6 At)-I = 0 (26)

The fourth-order accuracy is achieved by the effective addition of a difference expres-

sion representing h2(uxxt)i . This cancels the E(Uxxx)h 2 error associated with a cen-

tral derivative discretization for UUx. The largest error terms are now 0(h4).

Fourth-order accuracy with a nonuniform mesh may be possible if a collocation

procedure is used with a Hermite cubic polynomial approximation. This procedure

has been analyzed for ordinary differential equations; and fourth-order accuracy can be

achieved if the collocation points are appropriately located, otherwise only second-order

accuracy results (see Douglas and Dupont, ref. 11, Fyfe, ref. 13, and Albasiny and

Hoskins, refs. 16 and 17).

Complete equation.- For the full Burgers' equation (eq. (8)) a reduction to an equiv-

alent finite-difference form is possible. Considerable manipulation of the system (9) is

required, and the final result has not been worked out. The truncation error as obtained

from equation (11) is

!El1+ _3 ]h2+1_ 1 -  i)hih +ll(+ O[ t2, _i)hi3+l,h4+l]
ei = utt(J--_)At + Uxxxx _'(1 + _i)J 72 If (l-

E

L
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STABILITY

General Development for Linearized Burgers' Equation

For the linear Burgers' equation (7) with _ and u held constant, interior point

stability can be assessed with the von Neuman Fourier decomposition of the system (9).

With

or

where

where

V n = un exp lwx

vn+e=u nexpIc0 i+_hi+l + h

E= -1, 0, or +1 and I=VC1, system (9) becomes

Tiun+l = Piun (27)

T i =

_0 °tl °t2

_1 0 _3

_1 T2 0

Pi = 0

0

and the coefficients otj and pj are defined in equations (9g). Also,

_Ti = h{lI1- exp (-Igi)] + h{ll(1- exp Iq_i+l)

Ti= 3h{2[exp (-lq_i)- 11 - 3h{+21(exp I_oi+I - 1)

_'2= hill2 + exp (-I_i)l+ hill(2+exp I_Pi+1)

where (Pi = c°hi. Therefore,

(28a)

(28b)

(28c)

(28d)

17



un+li = Giu_

where Gi = TflPi is the amplification matrix. The yon Neumann condition necessary

for the suppression of all error growth requires that the spectral radius

P(Gi) _-<1

The eigenvalues of G i are found from

det(T_lPi - _i I) = 0

where I is the identity matrix. If

detT_ 1 = -rr3z 2 0 - °tl-_2 - °t2

the three roots for Xi are found to be

/ T1 1flea_ 1

= -Tr3T2_ ¢ 0

(29)

For the one-dimensional equation (7), three numerical procedures were considered:

(1) convection (mi) and diffusion (Mi) explicit, (2) convection explicit, diffusion implicit

(two steps required for inviscid stability), and (3) diffusion and convection implicit. With

explicit convection, procedure (1) or (2), both divergence and nondivergence forms of the

equations were evaluated.

The stability conditions imposed on these schemes are determined from

with k i given by the nonzero value in equation (29). As it is somewhat difficult to eval-

uate this condition with the expressions (28) for a nonuniform mesh, only the uniform

mesh stability is discussed here.

Explicit convection and diffusion.- For a uniform mesh and 0 = 0 in equations (9g),

El-6/3(1 cos ¢)(2+ cos ¢)-112= - + (3c sin ¢)2(2 + cos ¢)-2 __<1

where fi - _ At and c - _ At Necessary stability limits are fl < 1, c =<(3) -1/2 , andh 2 h " =

Rc _ c _ u-h =<2(3)1/2 These results are more restrictive than the limits found for the
v

forward time central space explicit finite-difference method, which (from ref. 2) are

u_

F

D

r
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fl<=½, c =<1, and R c=< 2. In view of this result and the fact that the explicit values for

m i and M i must still be determined by the implicit tridiagonal system (2) or (3), this

explicit representation is not recommended.

Explicit convection and implicit diffusion.- For 01 = 0 and 02 = 1 in equa-

tions (9g),

'XiI2 = [ 1+ (2(3c Sin 6_(I cos _o)(2 + cos _o)- I] -2
- _--<i

+ cos _o)-_'[

This leads to the condition

or

c 2 =<2_

c_< 2
Rc

For R c >> 1 this conclition is quite restrictive, while for R c << 1 the stability result

is quite acceptable. In the inviscid limit Rc _ o% the method is unstable as the implicit

and stabilizing diffusion effect vanishes. This instability can be eliminated if a second

step is prescribed. This method could then be likened to the Brailovskaya finite-

difference procedure (ref. 18). The spline technique remains consistent with first-order

temporal accuracy and second-order spatial accuracy. If the Cheng-Allen viscous cor-

rection (ref. 19) is made on the Brailovskaya difference procedure, the explicit diffusive

instability is eliminated; however, the method is no longer consistent in the transient

unless /_ << 1 (see Rubin and Lin, ref. 20).

The spline approximation is consistent, and with two steps there is no diffusive

instability. The two-step procedure is as follows: For step 1,

u_ = a n- At(um n + vM_) (30a)

For step 2,

a n+l= u n- At(_m_ + Mn+l)

Step 1 is given by system (9) with n+l - *

d 0 = 1 _1 = 0

P0 = 1 Pl = -u At

and

_2 = -v At_

JP2 0

(30b)

(31)
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Step2 is given by system (9)with

_0=1

Po=O

In addition, the term

where

or

where

Therefore,

and

and

Pl = -_ At

_2 = -v At\

/P2=0

DV_

I:°i]D-- 0

0

is added to the right-hand side of equation (9a), where

After Fourier decomposition, step 1 becomes

Tiv _ = Pit) n

T i and Pi are defined by equations (9g), (27), and (28), and step 2 becomes

Tit)F+1__Pit):-bit):- t)P)

Tit)n+ 1 : ffit)n

Pi : (Pi- D)TilPi + D

Pi = 0

0

T1
PO = 1 + _ At _.--__-1

(32)

(33a)

(33b)

B

=
F

y_

-Z

F

2O

- T1 _-I
Pl = -(_ At)2 r-2

P2=0

C_=l+_vAt
zr3



where

With

For a uniform mesh, with subscript i

_-1_

r 2

I = _-_ and

dropped, from equations (28c) and (28d),

w _ -3I(sin _0)h-l(2 + cos q_)-i = _ih-l_

= 1 + 6fl(1 - cos _p)(2 + cos (p)-I

pO,p 1 replacing p0,Pl in equation (29)

ik[2 _-4[(_ c24)2) 2 2l= - + c24 , < 1

If 3 = 0 (inviscid flow), then

c <- 4)_in= I(2 + cos (p)(3 sin q_)-llmin= (3)-l/2

This result is more restrictive than the c < 1 CFL condition found for the Brailovskaya

finite-difference method. For f_ ¢ 0, the effect of viscosity is to improve the inviscid

stability limitation; for _ -* 0, the method is unconditionally stable.

Implicit convection and diffusion.- For 0 = 01 = 02

equations (9g),

[k'2= {El-(1 -0)(_- 1)]2+(1 -0)2c2@2)([1

and 0 < 0 < 1 in

+ 0(9 - 1)_2 + 262_-1
02c < 1

This condition is satisfied and the spline procedure is unconditionally stable if o =>1/2.

Development for SADI Procedure

For the SADI procedure, consider the linear equation

u t + _u x + VUy = V(Uxx + Uyy)

With the spline approximation of equations (14) and a uniform mesh (hij = h

the amplification factors for the two steps of equations (14) are defined by

where

n+ 1

uij = GlV_

1
n+_

u_ +1 = G2vij

Gr = TrlPr (r = 1, 2)

and kij = k),
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and

W r =

1 _ _r2 _ 4

-3I sin gox h(2 + cos gVx) 0 0 0

6 (1 - cos (Px) 0 h2(2 + cos q_x) 0 0

-3I sin Cpy 0 0 k(2 + cos (Py) 0

6(1 - cos _0y) 0 0 0 k2(2 + cos (Py

Pr --

ml m2r m3r mS

C

--  ij,Li T
and

__ _ at _2_ -v At _I = _4=0 m_= m2=02 1 2

m31_ -_At m4_V At _21= _=0 _3_VAt2 2 2

_4_ -u At m_- -_ At2 2 m 2- u2t m3=m4=0

_ox = Wxh q)y = wyk

The only nonzero eigenvalues of G 1 and G 2 are ;t I and )t2, respectively; that is,

_,1 =
1-3/3y(1 -cos gOy)(2 + cos _py)-i -3Icy sin qVy(4 + 2 cos q_y)-1

1 + 3f_x(1 - cos _Ox)(2 + cos gOx)-1 + 3Ic x sin gOx(4 + 2 cos gOx)-1

_.2 =
1 - 3fix(1 - cos gOx)(2 + cos ¢Px) -1 - 3Icx sin CPx(4 + 2 cos g0x)-i

I + 3fly(1- COS gay)(2+ COS _Py)-1+ 3ICy sin (py(4+ 2 cos (py)-I

where cx - _ At Cy = kVAt' f_x- v At and fly= vA_..__ttFrom these results itcan beh ' h2 ' k2 "
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seen that IXIIIX21-<i is always satisfiedso that the SADI method is unconditionally

stable. Of course, boundary effectshave not been considered in this interiorpoint sta-

bility analysis.

SPLINE CURVE FITTING

In this section, the accuracy of a cubic spline fit to a given set of data points at pre-

scribed knots is considered. Error estimates for functional interpolation and for func-

tional derivatives are reviewed. Exact solutions of the nonlinear Burgers' equation ill)

are used in a series of numerical experiments to assess the following: (1) mesh require-

ments and resolution in regions with locally large gradients, i.e., for v << 1 in Burgers'

equation, (2) the effect of large mesh nonuniformity on overall accuracy, (3) splines under

tension as a means of smoothing spurious oscillations associated with a cubic spline fit,

and (4) the accuracy of a spline approximation for the nonlinear convective term (UUx)i

when this term is obtained from the nondivergence approximation uimi and the diver-

gence form approximation _i (where r_ i is the spline derivative of the function u2/2,

i.e., rn i approximates (u2/2)x). This comparison will shed light on the spline solutions

of Burgers' equation in divergence and nondivergence form.

Given a set of data points u i at the knots x I with

a=x 0<x l<x 2<x N<xN+ 1 =b

if the function u(x), with u(xil = ui, belongs to C4[a,b] then SA(x ) in equation (1)

approximates u(x)to 0(h4). Moreover, sPA(xi) approximates (0Pu/0xP) I to 0(h4-P),

where S_x(xi) = m i and S'_(xi) = M i (see Ahlberg, Nilson, and Walsh in ref. 10). The

derivative results have already been inferred by equations (17a) and (17b). If the higher

order spline approximation, equation (21b) is used to represent (Uxx)i , then overall

fourth-order accuracy for a uniform mesh results.

Resolution

A steady-state solution to the Burgers' equation, where

u t + (u - U)u_ = vu_

with boundary conditions u- 2U

u= U(1 - tan h U_)

Consider the domain -5 _-<77 _-<5.

The spline derivative approximations

or equation (4).

T]=x - Ut,

as _- -oo and u-O as 77- oo is

(34)

(35)

At the knots 77= _i, u = u i is given by equation (35).

m i and M i are found from equations (2) and (3)

rli=+5 are given byThe boundary conditions at
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:rUmi = vM i

This represents the spline approximation of equation (34) evaluated at _1= +5. In sev-

eral cases, less exact zero slope (m i = 0) or zero curvature (M i = 0) conditions were

prescribed. These led to negligible changes in the spline curve fit.

The results of a cubic spline approximation as compared with a three-point finite-

difference representation, for U = 0.5 and selected v values, are presented in tables 1

to 15. Columns 4 and 8 depict the exact values of (u_) i and (u_m)i as found from

equation (35). Columns 5 and 9 contain the spline approximations, m i and Mi, and

columns 6 and 10 depict three-point finite-difference approximations as given by

_2Ui+l _ (_2_ 1)u i - ui_ 1

(u )i-- +1)hi+l +ei (36a)

l
(u_]_?)i = °'i(_i + 1)h2+l + e i (36b)

The truncation errors e i for these derivatives are

u_: e i = (uTpp?/io" i _ + 0(h3+l ) (37a)

For ai --"0(1), the approximation of equation (36a) is second-order accurate; the approx-

imation of equation (36b) is first-order accurate unless _i = 1, in which case second-

order accuracy results. Therefore, from equations (17a), (17b), (37a), and (37b), E can

be defined as the ratio of spline truncation error to finite-difference truncation error, so

that:

Eu_] = (_i- 1) hi+l(u_p/r/)i + 0

(u_/_) ihi+ 1

4(U_?_) i (_2 1) (q3 + 1) -1

+ OI(cri 1) 2 3- hi+l,hi+ll

(u_Tp?7?)ihi+l + OI(°'i- 1)hi21,hi311

T_

i

m

F
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With derivatives of equal order of magnitude and lail _-<2, the spline approximation to

ur/ should be significantly better than the equivalent finite-difference result. The spline

fit for u_lr/ should be somewhat better for 2 > cri > 1; however, with a uniform mesh

1),

---1+0(h2)
so that, to lowest order, equal and opposite errors are incurred. This result has already

been implied in equation (17b) where it is shown that, for a uniform mesh, a spline and

finite-difference average is fourth-order accurate; this result is depicted in the last

column of table 4. The exceptional accuracy of the average is apparent.

In regions of large gradients, with derivatives of increasing magnitude (e.g., bound-

ary layers or shock waves), the local truncation errors for both spline and finite-

difference approximations increase. The deterioration is magnified for the spline fit as

the lowest order truncation error involves higher order derivatives. This difficulty can

be circumvented with a local decrease in the mesh dimension h i. This mesh reduction

would be nonuniform so that computer storage is minimized and would be dependent on

the magnitude of the local gradients. A few additional points properly located can lead to

a significant improvement in the spline curve fit. The finite-difference formulas are

also improved, but to a lesser degree.

For Burgers' equation (34) when v << 1, a region with large gradients, representa-

tive of a shock wave, develops. The tables for v = 1/2 (very weak shock), v = 1/8

(moderate shock), and v = 1/24 (strong shock) show how the spline curve fit varies with

different placement of mesh points. For the strong shock (v = 1/24) and a uniform mesh

(h = 0.2), there are few points in the shock region and the derivative approximations are

poor. With fewer total points but increased density in the shock region, overall accuracy

is significantly improved. Near the boundaries the derivatives may become smaller than

the associated truncation errors, and large percentage differences occur. This is par-

ticularly true with few mesh points. Similar trends can be observed for v = 1/8 or 1/2;

however, the shock is weaker in these cases, and the agreement is therefore good in

almost all of the examples presented. In addition to the solutions for a uniform 51-point

mesh, only the 15-point curve fits are depicted. Even for this very coarse grid, the

spline-derivative approximations are reasonably good for v = 1/8 and much better for

v = 1/2. With 51 points the agreement is excellent.

It is significant that for all the cases presented herein, even those in which the

derivative approximations are poor, the functional values, between the knots as obtained

from equation (1) are in excellent agreement with the exact values at the same locations.

These results reflect the higher order accuracy of the interpolation formula (1).
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It may bepossible to further reduce the required number of knots by using a
parametric cubic spline curve fit. With sucha procedure, step functions canbe fit with
a minimum of knots; this is particularly appealingfor regions with very large gradients,
i.e., strong shockwaves.

SplinesUnder Tension

A cubic spline curve fit (eq. (1)} althoughpassing through a prescribed set of data
points may exhibit spurious oscillations. These oscillations, which are generally much
less severe than those found with a standard polynomial curve fit, may be suppressedby
using cubic B-splines (ref. 21), which results in a more complex Galerkin or collocation
procedure for the solution of differential equations,or by applying tension to the cubic
spline fit described herein (seerefs. 22 and23).

In a mechanical sense, tension is used to pull taut the "thread" (curve) passing
through the data. This results in more accurate interpolation betweenthe knots. The
cubic spline approximation SA(X) of equation(1) is obtainedfrom a linear distribution
of the moment S_(x). If a tensile force is added,the spline function in the interval
_-l,i_, satisfies the following equation:

S'£(x) - (_2SA(X)= (Mi_ 1 - (_2Ui_l)(X i - x)h{ 1 + (M i - a2ui)(x - xi_l)h{ 1

The coefficient a is a tension factor; and for _ = 0, equation (1) is recovered. With

SA(Xi) = ui, S_(xi) = mi, S'_(xi) = Mi, and enforcing the continuity of S_(xi) so that

S_(x_) = Sk(x{'), the following results are obtained:

Mi_ 1 sinh g(x i - x) M i sinh (_(x- Xi_l) (u Mi_l.h[x i - x_sin +_ + i-1 /

- h7 J (38a)

mi = riMi-1 + siMi + (ui - ui-1)hf 1 (38b)

or

m i = -ri+lMi+l - Si+lM i + (Ui+l - ui)h{+l 1

mi+l -mi = (ri+l + Si+l)(Mi + Mi+l)

riMi_ 1 + (s i + Si+l)M i + ri+lMi+ 1 = (ui+ 1 - ui)htll -(ui - Ui_l)h; 1

(38c)

(38d)

(38e)
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where

sinh _h i - (rh i

ri = a2hi sinh ah i

ah i cosh ah i - sinh (rh i
s i =

_2h i sinh eh i

(38f)

(38g)

From the relations (38) it can be shown that for splines under tension the coeffi-

cients of the tridiagonal system (9) become

ai = ri - [ 0 _n+l(26iri + 26i_1s i ÷ yi)n+l (39a)
 hi i) "

bi=si+si+l+(hi+10Ai+l) n+l(25i+lri+l+25isi+l+Yi+l)n+l

{ 0 \n+l, yi)n+l (395)
-/hi_i) (25isi + 5i-lri -

'h \n+ 1,"O 7) (26i+1si+1 + - Yi+l) n+l (39c)c i = ri+ 1 + i+i-ki+l 25iri+l

hi hi
and d i is unchanged. For (r-* 0, r i =-_- and s i =-_-
equations (1) to (6) and equations (39) reduce to equations (9).

very large tensile force and equation (38a) becomes

SA(X) = Ui_l(X i - x)hi 1 + ui(x - Xi_l)h_ -1 + 0(¢r-2)

Therefore SA(X) is nearly linear between the knots. It has been found (ref. 23) that, if

represents the average mesh spacing, a dimensionless tension factor _ = 1 usually

works rather well to eliminate oscillatory behavior.

Examples of curve fitting with tension are given in tables 16 to 24. The tension

factor tr is generally chosen such that crh = 1. If the mesh resolution is poor (i.e.,

there are insufficient knots in regions of large gradients), tension will smooth the solu-

tion but accuracy of derivatives is not significantly improved. This plays an important

role in the solution of differential equations where the functional values at the mesh

points are unknown and where tension with a poor choice of grid points can lead to a

deterioration of the solution. This is discussed further in the next two sections. With

adequate mesh resolution in regions of large gradients, tension does act to reduce oscil-

latory behavior.

so that equations (38) reduce to

For _>> 1, there is a
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Divergence Form

It is known that for many problems in fluid mechanics accurate numerical solutions

are possible only when the governing equations are expressed in integral or divergence

form. For high Reynolds number flows with moderate to strong shock waves and little

numerical viscosity, numerical solutions obtained with the equations in divergence form

closely approximate the weak or integral solutions of the differential system (ref. 24).

This allows for shock capturing by the numerical procedure. Also, for internal flows,

conservation laws are generally more closely satisfied with the equations in divergence

form. Bozeman and Dalton (ref. 8) have clearly demonstrated the superiority of the

divergence form at large Reynolds numbers for the low speed driven cavity problem. In

regions with moderate gradients or for low Reynolds number flows, there does not appear

to be any advantage of the more complex divergence-form equations (refs. 1 and 8).

In order to assess the relative merits and even the necessity for divergence form

when using splines, curve fits of the nonlinear term in Burgers' equation (34) were

examined. In divergence form, equation (34) with U = 0.5 becomes

ut + (u--_/ = vurlr/

If rh i is the spline derivative of the function
u2( ) - u(,)

and m i of the function

is given by ffl i in diver-u(_), then the approximation of the nonlinear term (u-1)uo
\

form and by (u t - 1)m i for the nondtvergence representation. These expressionsgence

are presented in tables 25 and 26. Also tabulated are the finite-difference results.

In the region of large gradients or the shock structure, it is seen that for v = 1/8

the finite-difference approximation in nondivergence form is more accurate than the

divergence representation. However, for the stronger shock (v = 1/24), the reverse is

true; and the behavior implies the need for divergence form in high Reynolds number

finite-difference calculations if thin strong shock waves are to be accurately captured by

the numerical method (ref. 24). For v = 1/8, the spline approximation provides a sig-

nificantly better curve fit with nondivergence form of the data; moreover, with divergence

form, symmetry is no longer maintained. For v = 1/24, this loss of symmetry is still

evident, but neither of the spline curve fits is particularly good as long as the grid den-

sity in the shock region is too low; however, it will be observed that for the spline form-

ulation the solutions in nondivergence form are generally as good as or better than those

obtained with divergence form. These results agree with the conclusion of Douglas and

Dupont (ref. 11) that, unlike Galerkin or finite-difference methods, there appears to be no

advantage to divergence form for collocation procedures.

=
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BURGERS' EQUATION

Numerical Procedure

The spline calculation procedure was first applied to the one-dimensional nonlinear

Burgers' equation (34) with boundary conditions u - 2U as _ - _co and u - 0 as

- _. Initial conditions were specified such that

fi > o)
= (7 = 0)

v (7 < o)

For all of the solutions presented here, U = 0.5, v = Constant, and the boundary condi-

tions are prescribed at the finite locations 77= +5.

The tridiagonal system (10) is used to determine M n+l" then u n+l and m n+li ' 1

are obtained from equations (5), (6), and (8). The predicted stability restrictions were

all confirmed by the calculations. Therefore, the solutions to be discussed here were

obtained either with the implicit C0 = 1) procedure or the two-step method. The former

is unconditionally stable; the latter has the restriction c _-<(3)-1/2.

Implicit method.- For the implicit method, the nonlinear coefficient 25i = 5i At

= (ui - 0.5)At in system (10) was linearized by evaluation at the latest time t = n At.

Since the steady-state solutions were obtained in a minimum of computer time, the more

accurate quasi-linearization procedure of equations ill) to (13) was unnecessary. The

convective derivatives as found from equations (5), (6), and (8) are given by

n+l h(___n+l = Mi_l
Ill i 5i+25i-1 Y ; Mn+ll hi 25i+Si-l+h___l)n (ui -ui-1) n3A i - h_'_ i + i \'3 3A i + hiA i

The tridiagonal system (9), although unconditionally stable, is only conditionally diagonal

dominant. For a uniform mesh, diagonal dominance is assured if

For R c

c__h< 2
Re - /3 u =

> 2, diagonal dominance requires

or for R e - 0%

c <2
3

A similar result is found with finite differences (see Hirsh and Rudy, ref. 25).
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A correction similar to that proposedby Khosla and Rubin (ref. 26), which provides
diagonaldominanceof an implicit finite-difference method, canbe formulated for this
spline procedure. In view of the fact that the tridiagonal system (9)was inverted for c
as large as 600, this correction was unnecessaryfor the present calculations. The final

1< At < 600; this corresponds to a maximum of 431timesolutions were invariant for _ ,x-'-_

steps to convergence and to a minimum of 22 for the conditions: 31 points, v = 1/24,

unequal spacing, a i = 1.5, and g = 0.

Two-step method.- The two-step method is outlined in equations (30) to (32). The

tridiagonal system (10) is obtained for each step, with 0 = 0 for 6 i terms and 0 = 1

for )'i terms. Since the convective terms are evaluated explicitly in each step, solu-

tions were obtained with both divergence and nondivergence forms of the convective deriv-

ative. In nondivergence form,

(26imi)n = (u i - 0.5)nm n At

with m.n obtained from equation (5) or (6). In divergence form,
1

(26imi) n = mi~n At

u 2 _ u i
where I_P is obtained from equation (3), with m i - mi and u i -*

l 2

The boundary conditions for both the implicit and two-step procedures, applied at

77i = +5, were u 0 = 1, UN+ 1 = 0

prescribed), and =r0.5m = vM i.

relation for M 0 and M 1 and

boundary conditions m i = 0 or

variations in the solutions.

(for v _, 1/2, the exact values 0.9933 and 0.0067 were

The procedure outlined previously leads to a linear

M N and MN+I, respectively. In several cases, the

M i = 0 were tested; these did not cause any significant

Numerical solutions were also obtained for splines under tension as described by

the systems (38) and (39). The procedures for the implicit and two-step methods are

identical with those of the preceding discussion.

Discussion of Numerical Results

The steady-state results of calculations for Burgers' equation are given in tables 1

to 24 and for the strong shock (v = 1/24) in figures 1 to 17. The two-step solutions are for

divergence form if unspecified. In the tables, columns 3, 7, and 11 depict the calculated

values of ui, mi, and Mi, respectively, as obtained with the implicit nondivergence-

form spline procedure. The two-step results in nondivergence form were almost identi-

cal with the implicit solutions. This can be seen from several of the figures where both

solutions are depicted.

3O
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In table 9, column 12, the calculated values of u i with the two-step divergence-

form procedure are presented. These are considerably less accurate than the implicit

solutions and follow the pattern of the curve fits in tables 25 and 26. This loss of accu-

racy with divergence form is found for a nonuniform mesh as well and leads to a conclu-

sion that is contrary to that of finite-difference procedures. For spline calculations, the

nondivergence form appears to be preferable providing there is adequate grid resolution

in the shock structure. This result may be significant for any shock-capturing study.

The solutions for ui, as seen from the tables and figures, are all quite acceptable.

This is true even when the agreement for m i and Mi, with the analytic derivatives

obtained form equation (35), is not very good. As the number of mesh points in the shock

structure is increased, a noticeable improvement in m i and M i can be discerned.

This behavior follows the trend found for spline curve fitting; i.e., accurate derivative

representation in regions of large gradients is possible only with adequate mesh resolu-

tions in these regions. In this respect, a nonuniform mesh requiring fewer total grid

points is desirable. As few as 15 to 19 points leads to solutions for ui that are quite

good; moreover, as seeh with _i = 1.6 and 19 total points, in the shock (hi)mi n = 0.044,

while near the boundary (hi)ma x = 1.905. This represents a significant mesh variation,

which is highly desirable for shock and boundary-layer problems.

Another interesting feature of the spline solution is shown in figure 1, where a non-

divergence, central derivative, finite-difference calculation is also" depicted. Nondiver-

gence finite-difference solutions for a nonuniform mesh are shown in the last column of

tables 5 and 6. The difference formulas are given by equations (36) and (37). Since

(Rc)ma x = 2.4 in this case, the finite-difference solution exhibits an oscillation typically

found for R c > 2. This oscillation does not occur with the spline result and may be indi-

cative of the fourth-order accuracy of the convection derivative m i. In addition, the

interpolation formula (eq. (1)) provides intermediate u(_) values that agree very well

with the exact solution (eq. (35)) so that accurate grid realinement is possible.

In several runs, with a nonuniform mesh and few mesh points, oscillations did

appear in the final solution. In most cases, tension (with _ = 1) removed or minimized

this spurious behavior; h is the average mesh width (10/N+2). The primary effects of

tension can be summarized as follows: First, for the 15-point calculations with boundary

conditions at 77= +5, h i near the boundary is extremely large, e.g., (hi)ma x = 2.261

with _i = 1.8, so that stable solutions are obtained only when tension is included in the

spline formulation. Second, for 15 points with boundaries at 77= +3 or 19 points with

boundaries at _ = :_5 stable solutions are obtained, but oscillations appear near the

boundaries. Tension has the effect of minimizing or eliminating the oscillations with no

apparent loss of accuracy. Third, if the spline derivatives are inaccurate, as with a

coarse mesh in the shock structure, tension does not improve the accuracy but appears
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to havea negative effect. This is apparently due to the low mesh density in a region of

large gradients; a similar effect occurred with the spline fitting under tension as previ-

ously discussed. Fourth, it does appear that tension can be used to smooth oscillations

arising from large changes in mesh width when local singular regions form and increased

mesh resolution is required.

DIFFUSION EQUATION

The two-dimensional diffusion equation

at = l(uyy + Uzz)

where

tions u(t>O,0,z=>O) = 1, u(t>O,y_->O,0) =i, and

solution

u= 1 -erfYerf Z

where Y _(R) 1/2 and Z z(R) 1
/2

= = This solution describes the impulsive motion of

a right-angled corner formed by two infinite flat plates and has been used by Sbwerby

(ref. 27) to infer the steady flow along the corner with leading edge at t = 0, i.e.,

Rayleigh's problem for a corner. This problem was used to test the accuracy of the

SADI procedure previously outlined. The two-step procedure is given by

and

u = u(t,y,z), with the initial condition u(0,y,z) = 0 and with the boundary condi-

u(t,y,z) - 0 as y,z - oo has the exact

n Pijui j = ui j + + n

u_+l n+-I At(Ln+ 1 p_+l 1
=ui j 2+_2__ ij +

where Lij and Pij are the spline approximations to (Uyy)i j and (Uzz)ij, respec-

tively. The boundary conditions are simply uij = 1 on the walls and uij - 0 as

y,z -* oo. In addition, from the governing equation, Lij = 0 on y = 0 and z > 0 and

Pij = 0 on z =0 and y>0.

Some results of this SADI calculation for R = 1000 are given in table 27 and fig-

ure 18. A nonuniform grid was specified in order to accurately describe the boundary-

layer behavior near the walls with a minimum of mesh points. The agreement with the

exact solution is reasonably good so that the validity of the SADI procedure is confirmed.

F
L
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INCOMPRESSIBLEFLOW IN A CAVITY

Numerical Procedure

As a final test problem the incompressible flow in a driven cavity was considered.
This problem has beenstudiedby numerous investigators, and recently Bozemanand
Dalton (ref. 8) have reviewed the literature andpresented somedefinitive results and
conclusions. The governing equationsin terms of a vorticity stream-function system
are

_xx + _yy = _ (40a)

+ +% -- + yy) (40b/

where _ is the stream function, [ is the vorticity, and u = _hy and v = -$x are

the velocities in the x- and y-direction, respectively. The boundary conditions and

geometry are shown in figure 19. For all the calculations the initial conditions are

_(x,y) = 0 and _(x,y) = 0.

Solutions are obtained by an iterative SADI procedure. The SADI system repre-

senting equation (21) is given in two steps for both stream function and vorticity.

Stream function.- For step 1,

n+l,s+½

$ij = _U +

l
/ _\n+l,s n+:LI (41a)+ \Mij) - ;ij

J

For step 2,

n+l's+l I n+l's+l
:+l,s+l % a_ (L?._
-ij = + 7L_ ij/

+ (Mij_)n+l's+l - _+I 1 (41b)

The physical time t equals n At;

a fictitious time step; and r = s AT.

steady-state limit (7o." _) of equations (41); L_ and M_

& £

tions to a2A and a_A, respectively (The superscript
_y2 _x 2 "

First derivatives _y = u and _x = -v are represented by

Vorticity.- For step I,

n+_ I f'_"(m'_'_n m_(_ n+12 R- 1 (Lfj) n+12- I{_ U/ + ij\'ij/

At is the time increment at each step n; AT is

Solutions for equation (40a) are obtained as the

are the spline approxima-

implies that A = _.)

_ and mi_ , respectively.
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For step 2,

(42b)

The bar over the _ spline derivatives denotes an average of n and n+l values; the

superscript denotes _ spline derivatives.

The iterative procedure is as follows:

(1) Given _ir_ and _ either as initial conditions or at time n At, all the

spline derivatives are determined from equations (14) to (16) and (4) to (6). On the ver-

tical surfaces, Mi_ = _ij; on the horizontal boundaries, Li_ = _ij-

(2) The vorticity _+1 is obtained with the SADI technique as outlined in equa-

tions (42) and (9). At the boundaries, _ij is found from an expression similar to equa-

tion (5) or (6). At the upper moving wall (w), with

L_ kiwLi_,w-1 (_iw _i,w-1)kiw iw
_i_w=l---+ +

3 6 kiw

and with _iw = 0 and Li_w = _iw, the vorticity becomes

L _
3 i,w-1 3_i,w-1

_iw - +
kiw 2 k2w

Similar relations can be derived for the three stationary walls.

M_j and L_.j are obtained from equations (42) evaluated at the surface.
n+ 1F

wall, equations (5) and (6) are used to eliminate m_j. In addition, [iw
Z

with the three-point formula

n+l ._p+l 6[nw _nwl
_iw v_lw + -= 8 + O(At2)

(3) The vorticity

over the fictitious time

obtained.

Boundary values for

For the moving

is evaluated

_n+l is used in equations (41) and the SADI procedure is applied
--j

r until a converged solution, to any specified tolerance, is

(4a) If only the steady-state solution is required, the calculation proceeds to the

next time step (n+2) by returning to step (2) with n - n+l. The spline derivatives for

have already been determined in step (3).
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(4b) If an accurate transient is required, the calculation proceeds to step (2) with

$ij and all spline derivatives of _ replaced by averagesover the n and n+l time
steps. Then _n+l is recalculated, andthis process continuesuntil convergence.

Althoughaccurate transient solutions havebeenobtained in a number of cases, only

the steady-state results are presented here. The time step At was generally chosen

such that At _ (hij,kiJ)min_ Larger values were used in many cases, but a careful study
of optimal time integration by discrete or semidiscrete procedures must still be consi-

dered. Primary interest at this time was concerned with the applicability of the SADI

procedure, as well as the accuracy, ease of handling boundary conditions, and other gen-

eral characteristics of the spline approximation.

Calculations are presented for a square cavity with R = 10 and 100 and for a rec-

tangular cavity with b/a = 2 and R = 100. Comparisons are given with finite-difference

calculations in both divergence and nondivergence form. Central differences are used

throughout. The vorticity equation is solved with an ADI procedure, and the solution for

is obtained by a direct Poisson solver or by successive overrelaxation.

Discussion of Numerical Results

The results are presented in tables 28 to 34 and figures 20 to 22. For all cases,

the values of _max and the vorticity _ at the midpoint of the moving wall are

depicted. For these values, comparisons between the spline and finite-difference solu-

tions are possible even when the grid alinements differ. In addition, the distributions of

and _ for the spline solutions, and in several cases for the finite-difference solu-

tions,.,, are presented. The figures depict the horizontal velocity component, uij or

£_, along a vertical line passing through the vortex center.

The results for R = 10 are given in tables 28 and 29 and figure 20. For this low

Reynolds number the spline and finite-difference solutions in either divergence or nondi-

vergence form are quite similar. For R = 100 the large disparity between the diver-

gence and nondivergence finite-difference solutions, first noted by Bozeman and Dalton

(ref. 8), is apparent. The values of _max and _wall are shown in table 30 for a

variety of grids. Also included is a limiting solution obtained by Richardson extrapola-

tion (ref. 12) from the two or three calculated values of each procedure. It is evident

that the divergence finite-difference solution is more accurate than the nondivergence

result; however, the spline solution, which is obtained in nondivergence form, appears to

be even more accurate than the divergence-form finite-difference result. For example,

the value of _max as obtained from the spline calculation with 15 points (this denotes

a 15 × 15 node mesh with h = k = 1/14) is about 1 percent higher than the extrapolated
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value; the 17-point divergence-form finite-difference result is about 4 percent lower

than its extrapolated value. The nondivergence 15-point finite-difference result is low by

about 12 percent. These results again seem to reflect the higher order accuracy of con-

vection terms in the spline procedure; in the vortex core region, the flow is inviscid

dominated. However, near the moving wall, where diffusion is important, the vorticity

results appear to show a similar trend; the spline values are always somewhat more

accurate than the divergence finite-difference solutions.

Another interesting result is shown in table 30(c). The velocity at the first grid

point away from the upper left boundary is depicted. With 15 points, the spline result is

of an opposite sign to that obtained with the nondivergence finite-difference method. With

a finer grid, the finite-difference solution changes sign so that once again the spline pro-

cedure prevails. Unfortunately, the more accurate divergence-form finite-difference

solutions were obtained with a slightly different grid so that a direct comparison is not

possible. However, a change in sign with mesh reduction is observed for the velocity in

the corner region. An interpolation procedure is used to estimate the value at the

desired location. These results are also given in table 30(c). The extrapolated limit

closely approximates the solution obtained with splines. The velocity profiles through

the vortex center are shown in figure 21. These values are also tabulated in table 31.

The agreement is quite good.

A spline solution for R = 100 was also obtained with a 19-point nonuniform mesh.

In the central region of the cavity hij = kij = 1/14 as with the 15-point mesh; however,

near the boundaries there is some grid realinement to increase the mesh density in the

surface boundary layers (see table 32(g)). The increased accuracy near the boundaries,

where diffusion is most important, leads to a solution that appears to be almost as accu-

rate, throughout the entire flow domain, as the 29-point results. The improved accuracy

of this 19-point solution is seen in tables 30(a) and 30(b) where Smax and _wall are

indicated. These results imply the considerable advantages of the spline procedure with

a nonuniform grid in regions of large gradients. In this manner, the accuracy of the

second-order diffusion terms is enhanced in domains where these effects are significant.

In inviscid regions the fourth-order accurate convection terms are dominant, and mesh

reduction is not as important. The improved resolution of the corner vortices is seen in

the _,_ distributions of tables 32(g) and 32(h); the comparisons with the 65-point diver-

gence finite-difference solutions are reasonably good.

For R = 100, spline solutions were also obtained for a 2 × 1 rectangular cavity with

a 29 × 15 point uniform mesh; the results are presented in tables 33 and 34 and figure 22.

A double vortex is observed. The flow properties are in qualitative agreement with the

divergence-form finite-difference solutions obtained with a 33 x 17 uniform mesh.

=
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CONCLUDINGREMARKS

The use of a cubic spline approximation for the evaluation of spatial gradients pro-
vides a highly efficient andaccurate procedure for numerical calculations with a uniform
or nonuniform mesh. It hasbeenshownthat: (1) Second-order spatial accuracy is
achieved,evenwith an arbitrary nonuniform mesh, for equationsof the Navier-Stokes
type; (2) For inviscid regions, with a nonuniform mesh, third-order accuracy results;
(3) For the Navier-Stokes equationsand uniform mesh, the interior point truncation error
is fourth order with a combinedspline finite-difference scheme; (4) Derivative boundary
conditions can be treated easily and accurately so that spatial finite-difference discreti-
zation is unnecessary; (5) There appears to be noparticular advantagegainedwith the
divergenceform of the equations; (6) Accurate interpolation is possible if grid realine-
ment becomesdesirable; (7) Evaluation of quadratures which are generally not of a tri-
diagonalform, as in finite-element or other Galerkin procedures, is unnecessary.

With a finite-difference discretization for the time-like integration, it has addition-
ally beenshownthat: (1) The system of algebraic equationsresulting from the spline
formulation is block tridiagonal, and therefore inversion for implicit time discretization
is accomplishedwith anefficient algorithm. Moreover, appropriate substitutions can
reduce the vector system to a scalar one, thereby eliminating the necessity for any
matrix inversions. (2) Explicit, implicit, andmixed time integrations have beenconsid-
ered. The interior point stability conditions for explicit procedures are slightly more
restrictive than those found with equivalent finite-difference techniques. Implicit methods
are unconditionally stable.

Solutionshave beenobtainedfor the one-dimensional nonlinear Burgers' equation,
and in two dimensionsfor the diffusion equationand the vorticity-stream function system
depicting the incompressible viscous flow in a driven cavity. Oscillations typically found
with second-order accurate finite-difference methodswhenthe cell Reynoldsnumber
exceeds2 did not occur with the spline solutions; and this probably reflects the higher
order accuracy in the convective term. Accurate solutions for Burgers' equationare
obtained evenwith a highly nonuniform mesh if adequatemesh resolution is s_ecified in
the region of largest gradients.

For two-dimensional flows the SADIprocedure appears to work quite well for both
the diffusion equationand driven cavity problem. Comparisons with the analytic solution
available for the former are excellent, and with finite-difference calculations for the lat-
ter are quite reasonable. The spline solutions for the c.avity obtainedwith the non-
divergence form of the equationsare somewhatbetter than the divergenceform finite-
difference solutions and considerably better than the nondivergenceform finite-difference
results. Onceagain the higher-order accuracy of the convectionoperator may account
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for the improvement with the spline formulation. The vorticity boundary condition has
beentreated directly and without the needof any finite-difference discretization at the
boundaries.

Langley ResearchCenter,
National Aeronautics andSpaceAdministration,

Hampton,Va., January 30, 1975.

z

r

38

0



APPENDIX

KREISS FOURTH-ORDER FINITE-DIFFERENCE METHOD

For a uniform mesh, H. O. Kreiss has proposed a fourth-order method that is very

similar to the basic spline procedure presented here, see Orszag and Israeli (ref. 28).

For Burgers' equation (7), Kreiss' method reduces to the system of equations (8), (2),

and (3) except that the coefficients h/6, 2h/3, and h/6 for Mi_l, Mi, and Mi+l,

respectively, in equation (2) become h/12, 5h/6, and h/12, respectively. No longer

is M i a spline approximation but a finite-difference approximation such that

M i = (Uxx)i + 0(h 4)

The system (9) describes Kreiss' method, with hi/6 -- h/12 in Ai, hi + hi+l _ 5h in
3 6

B i and hi+-----/1- h in C i. All other entries in equation (9c) are unchanged.
6 12

The stability of this procedure can be assessed directly from equation (29); a i and

Pi are given in equations (9g); T1, T2, and _1 are given by equations (28). Due to the

change of coefficients in equation (2),

67r3 = h(5 + cos #)

instead of the spline value

6r 3=h(4 + 2 cos _)

The stability condition [Xi[ < 1, with Xi given by the nonzero value in equation (29),

leads to the following results: (1) The implicit procedure (0 = 1) is unconditionally

stable; and (2) the explicit procedure (0 = 0) has a stability condition

+ _1
5+cos 2+cos_/

Therefore, necessary stability restrictions are fl < _ c =< 1 < V_, _, and R c
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-5.0

-4.8

-4.8

-4.4

-4.2

-4.0

-3.8

-3.6

-3.4

-3,2

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-•8

-.6

-,4

-.2

0

,2

,4

,6

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3•2

3.4

3.5

3.8

4.0

4.2

4.4

5.0 t

4.6

4.8

TABLE 25.- COMPARISON OF SPLINE AND FINITE-DIFFERENCE CURVE FITS OF THE EXACT SOLUTION

TO BURGERS' EQUATION FOR v = I/8, a = 0, AND 51 EQUALLY SPACED POINTS

Exact
u

0,9999999980

.9999999950

•9999999900

• 9999999770

.9999999490

,9999998870

.9999997500

.9999994430

.9999987600

.9999972390

.9999938560

.9999863260

.9999695680

.9999322760

.9998492900

,9996646500

.9992539710

•9983411990

.9963157600

.9918374290

• 9820137900

.9608342770

,9168273040

.8320183850

.6899744810

.5

•3100255190

.1679816150

.0831726960

.0391657230

.0179862100

8.16257 × 10 -3

3•68424 × 10-3

1.65880 × 10 -3

7.46029 × 10 -4

3•35350 × 10 -4

1.50710 × 10 -4

6.77241 × 10 -5

3.04316 × 10 -5

1.36740 × 10 -5

6.14417 × 10 -6

2.76076 × 10 -6

1.24049 × 10 -6

5•57393 × 10 -7

2.50451 x 10-7

1.12534 × 10 -7

5.05660 × 10 -8

2.27200 × 10 -8

1.02090 × 10-8

4.58500 × 10-9

2.06100 × 10 -9

Spline
curve fit

(u½?m
0

-8.91817 × 10 -9

-2.04316 × 10 -8

-4.53333 × 10-8

-1,00921 × 10 -7

-2,24592 × 10 -?

-4.99854 × 10-7

-1.11242 × 10 -6

-2.47574 × 10 -6

-5.50985 × 10 -6

-1.22623 × 10 -5

-2.72893 × 10 -5

-6.07295 × 10-5

-1.35136 × 10 -4

-3.00652 × 10 -4

-5.68627 × 10 -4

-1.48564 × 10 -3

-3.29445 × 10-3

-7.27317 × 10 -3

-.0159005100

-.0340113120

-.0693448020

-. 1272710330

-. 1860746010

-.1625654640

0

.1625654640

.1860746010

.1272710330

.0693448020

.0340113120

.0159005100

7.27317 × 10 -3

3.29445 × 10 -3

1.48564 × 10 -3

6.68627 × 10-4

3.00652 × 10 -4

1.35136 × 10 -4

6.07295 × 10 -5

2.72894 × 10 -5

1,22623 × 10-5

5.50987 × 10 -6

2.47575 × 10 -6

1.11243 × 10 -6

4.99858 × 10 -7

2.24591 × 10 -7

1.00922 × 10 -7

4.53286 × 10 -8

2.04423 × 10-8

8.91511 × 10-9

0

St:line
curve fit

0

-1•07708 × 10 -8

-2.59096 × 10-8

-5.76706 × l0 -8

-1.28429 × 10-7

-2.85815 × 10 -7

-6.36108 × 10-7

-1.41567 × 10 -6

-3.15061 × 10 -6

-7.01175 × 10 -6

-1.56046 × I0 -5

-3.47272 × i0-5

-7.72793 × 10 -5

-1.71951 × 10 -4

-3.82503 × 10 -4

-8.50373 × 10 -4

-1.88809 × l0 -3

-4.18002 × i0-3

-9.19513 × 10 -3

-.0199423470

-.0419268740

-.0823970730

-. 1404670520

-.1786129160

-. 1168326780

.0555355540

.1980830400

,2041741100

.1350634280

.0725351440

.0353506390

.0164784110

7.52787 × 10 -3

3.40778 × 10-3

1.53635 × 10 -3

6.91368 × 10 -4

3.10862 × 10 -4

1.39722 × 10 -4

6,27896 × 10 -5

2.82149 × 10 -5

1.26781 × ]0 -5

5.69672 × 10 -6

2.55971 × 10 -6

1.15016 × 10 -6

5,16809 × 10 -7

2.32207 × 10 -7

1.04344 × 10 -7

4.68685 × 10 -8

2.11259 × 10-8

9,07434 × 10-9

0

Exact

(° - ½1uo

-4.12231 × 10 -8

-9.17436 × 10 -9

-2.04179 × 10-8

-4. 54409 × I0-8

-1.01131 × 10-7

-2,25070 × 10 -?

-5.00903 × 10-7

-1.11478 × 10 .6

-2.48098 × 10 .6

-5.52148 × 10 .6

-1.22881 × 10-5

-2.73469 × 10 -5

-6.08576 × 10 .5

-1.35421 × 10 -4

-3.01284 × 10 -4

-6.70026 × 10 -4

-1,48872 × 10 -3

-3.30111 × 10 -3

-7.28724 × 10 -3

-.0159275520

-.0340546720

-.0693680360

-. 1271406630

-.1855165940

-. 1625495349

0

.1625495340

,1856165940

.1271406830

.0693680360

.0340548720

.0159275520

7.28724 × 10-3

3.30111 × 10 -3

1.48872 × 10 -3

6.70026 × 10 -4

3.01264 × 10-4

1.35421 × 10 -4

6.08576 × 10-5

2.73469 × 10 .5

1.22881 × I0 -5

5.52148 × 10 -6

2.48098 × 10 -6

1.11478 × 10 -6

5.00903 × 10-7

2.25070 × 10-?

1.01131 × 10 -7

4. 54409 × 10 -8

2.04179 × 10-8

9,17436 × 10-9

4.12231 × 10-9

Finite -difference
curve fit

-1.01850 × 10 -8

-2.26687 × 10-8

-5.04462 × 10-8

-1.12267 × 10-7

-2.49856 × 10 -7

-5.56073 × 10-7

-1.23755 x 10-6

-2.75421 × 10 -6

-6.12957 × 10 -6

-1.36414 × i0-5

-3.03584 × 10 -5

-5.75586 × 10 -5

-1.50328 × 10 -4

-3.34432 × 10 -4

-?.43649 × 10 -4

-1.65185 × 10 -3

-3.66058 × I0-3

-8.06981 × 10 -3

-.0175856100

-.0373498670

-.0751004190

-.1342349520

-.1882982690

-.1576875510

0

.1576875510

• 1882982690

.1342349520

•0751004190

•0373598670

.0175856100

8,06981 × 10 -3

3.66058 × 10 -3

1.65185 × 10 -3

7.43649 × 10 -4

3.34432 × 10 -4

1.50328 × 10 -4

6.75586 × ]0 -5

3.03584 x 10-5

1.36414 × 10-5

6.12957 × 10 .6

2.75421 × 10 -6

1.23755 × 10-6

5,56073 × 10 .7

2.49856 × 10 -7

1.12267 × 10 -7

5.04462 × 10 -8

2.26887 × 10-8

1.01850 x 10-8

Finite -difference
curve fit

d u2

-1.01850 × 10 -8

-2.26688 × 10-8

-5.04463 × 10-8

-1.12268 × 10-7

-2.49856 × 10 -7

-5.56074 × 10-7

-1.23755 × 10 -6

-2.75420 × 10 -6

-6.12956 × 10 -6

-1.36413 × 10 -5

-3.03581 × 10 -5

-6.75572 × 10 -5

-1.50321 × 10 -4

-3.34398 × 10 -4

-7.43481 × 10 -4

-1.65101 × 10 -3

-3.65649 × 10 -3

-8.04987 × 10 -3

-.0174900500

-.0369197820

-.0732403660

-, 1276650290

-. 1720683720

-. 1377952500

0

.1377952600

.1720683720

.1276650290

.0732403660

.0369197820

,0174900500

8.04987 × 10 -3

3.65649 × 10 -3

1.65101 × 10 -3

7.43481 × 10 -4

3.34398 × 10 -4

1.50321 × 10 -4

6.75572 × 10-5

3.03581 x I0-5

1.36413 × 10 -5

6,12958 × 10 -6

2,75420 × 10 -6

1,23755 × 10 -6

5.56073 × 10 -7

2.49856 × 10 -7

1,12267 × 10 -7

5.04462 × 10-8

2.26687 × 10-8

1.01850 × I0-8

=
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TABLE 26.- COMPARISON OF SPLINE AND FINfTE-DIFFERENCE CURVE FITS OF THE EXACT SOLUTION

TO BURGERS' EQUATION FOR v = 1/24, _ = 0, AND 51 EQUALLY SPACED POINTS

Exact
U

-5.( 1.0

-4._ l.O

-4.E 1.0

-4.4 1.0

-4.2 1.0

-4.C 1,0

-3.8 1.0

-3.6 1.0

-3.4 1.0

-3.2 1.0

-3.0 1.0

-2.8 l.O

-2.6 1.0

-2.4 1.0

-2.2 1.0

-2.0 1.0

-1.8 1.0

-1.6 .9999999950

-1.4 .9999999490

-1.2 .9999994430

-1.0 .9999938560

-.8 .9999322760

-.6 .9992539710

-.4 .9918374290

-.2 .9168273040

0 .5

.2 .0831726960

.4 8.16257 × 10 -3

.6 7.46029 × 10-4

.8 6.77241 × 10-5

1.0 6.14417 × 10 -6

1.2 5.57393 × 10 -7

1.4 5.05660 × 10-8

1.6 4.58500 × 10 .9

1.8 4.1600 × 10 -10

2.0 3.7000 × 10 -11

2.2 4.0000 × 10 -12

2.4 0

2.0 0

2.8 0

3.0 0

3.2 0

3.4 0

3.6 0

3.8 0

4.0 0

4.2 0

4.4 0

4.6 0

4.8 0

5.0 0

Spline
curve fit

(u½)m
0

1.27547 × 10 -14

-4,46447 × 10 -14

1,65835 × 10 -13

-6,18734 × 10 -13

2.30925 × i0 -12

-8.61880 × i0 -12

3.21680 x i0 -II

-1.20061 × i0 -10

4.48104 × i0 -IO

-1,672460 x 10-9

6.242140 x I0-9

-2.329760 × 10 -8

8.695370 x 10-8

-3.245380 x 10-7

"1.211040 × 10 -6

-4.523020 x 10-6

1.684800 x 10-5

-6.324910 × 10 -5

2.320170 x 10 .4

-9.105680 x 10-4

2.906350 x 10 .3

-.01624217000

1.425470 × 10 -3

-. 50665763800

0

.50665763800

-1.425470 x 10 -3

.01624217000

-2.906350 × 10-3

9. 105680 × 10 -4

-2.320170 × 10 -4

6.324910 × I0-5

-1.684800 x 10-5

4.523020 x 10-8

-1.211050 _ i0 -6

3,245490 x 10-7

-8.694880 × 10 -8

2.329630 × 10-8

-6.241790 x 10-9

1.672370 × 10-9

-4,48079 × 10 -10

1.20054 × 10-10

-3.21662 × 10 -11

8.61832 × 10 -12

-2.30912 × 10 -12

6.18699 × 10 -13

-1.65825 × 10 -13

4.46422 × 10 -14

-1.27539 × 10 -14

0

Spline
curve fit

0

-1.12686 × 10 -14

3.94928 × 10 -14

-1.46687 × 10 -13

5.4'/288 × 10 -13

-2.04260 × 10 -12

7.62358 × 10 -12

-2.84535 x 10-11

1.06197 × 10 -10

-3.96361 x 10-10

1.479340 x 10-9

-5.521350 × 10 .9

2.060740 × 10 -B

-7.691310 × 10-8

2.869740 × 10 -7

-1.072200 × 10 -6

3.989670 × 10-6

-1.502460 × 10-5

5.460020 × I0 -5

-2.200570 × 10 .4

6.419600 × 10 -4

-4.371200 × 10-3

-5.226220 × 10 -3

-.19277486800

-.33255690200

.16384511900

.46984169900

.02632517100

9.038650 × 10 -3

-9.405780 x 10-4

3.865550 × 10 -4

-9.136280 x 10-5

2.558630 × 10-5

-6.754910 x 10-6

1.818960 x 10-6

-4.865290 × 10 -7

1.304300 n 10-7

-3.493800 n 10-8

9.360980 x 10-9

-2.508100 × 10-9

6.71996 × I0-I0

-1.80048 × lO -I0

4.82405 × 10-11

-1,29251 x 10-11

3.46304 × 10 -12

-9.27859 × 10 "13

2.48616 × 10 -13

-6.66621 x 10 -14

1.80488 × lO -14

-5.76497 x I0-15

0

-5.25391 × I0 -26

-5.79147 × I0 -25

-6.38404 × 10 -24

-7.03724 × 10 -23

-7.75728 × 10 -22

-8.55098 _< I0 "21

-9.42590 × 10 -20

-1.03903 × l0 -18

-1.14535 × 10 -17

-1.26253 × l0 -16

-1.39171 × 10 -15

-1.53411 × lO -14

-1.69108 × 10 -13

-I.86410 × 10 -12

-2.05483 × I0 -ll

-2.26508 × IO -I0

-2.496840 × 10-9

-2.752310 x 10 -8

-3.033920 × 10 -7

-3.344330 × 10 -6

-3.686440 × I0 -5

-4.062620 × 10 -4

-4.466160 × 10 .3

-.04778265700

-.38142198800

0

.38142198800

.04776265700

4.466160 × 10 -3

4,062620 × 10 -4

3.686440 × 10 -5

3.344330 × 10 -6

3.033920 × i0-7

2,752310 × 10 -8

2,496840 × 10 -9

2.26508 × i0 -I0

2.05483 × lO -II

1.86410 x i0-12

1.69108 × lO -13

1.53411 × lO -14

1,39171 × i0-15

1.26253 × lO -16

1.14535 × 10 -17

1.03903 × 10 -18

9.42590 × 10 -20

8,55098 × lO -21

7,75728 × 10 -22

7.03724 x 10 -23

6.38404 × 10 -24

5.79147 x 10-25

5.25391 × 10 -26

Finite -difference
curve fit

(u-l)u.

0

0

0

0

0

0

0

0

0

0

0

0

0

-5.00000 x 10-11

-5.15000 x I0-10

-5.685000 × 10-9

-6.268750 x 10-8

-6.910100 x 10-7

-7.617000 x 10 -6

-8.395740 x 10-5

-9.24731"0 x 10-4

-.01010346100

-.10135130100

-,51252817300

0

.51252817300

.10135130100

.01010346100

9.24'7310 x 10-4

8.395740 × I0-5

7.617000 × 10 -6

6.910100 × 10 -7

6.268750 × 10 -8

5.685000 × 10 .9

5.15000 × I0 -I0

4,62500 × 10 -II

5.00000 × 10 -12

0

0

0

0

0

0

0

0

0

0

0

0

Finite -difference

curve fit

0

0

0

0

0

0

0

0

0

0

0

0

-I,00000 × i0 -II

-4.25000 × I0 -ll

-5.15000 × I0 -I0

-5.685000 x 10-9

-6.268750 x 10 -8

-6.910100 x 10 -7

-7.616980 × 10 .6

-8.395270 × 10 -5

-9.241600 × 10 -4

-, 01003528000

-.09438690800

-.30238007100

0

.30238007 ] O0

.09438690800

•01003528000

9.241600 × 10 -4

8.395270 × 10 -5

7,616960 × 10 -6

6.910100 × 10 -7

6.268750 × 10 -8

5.685000 × 10 -9

5.15000 × I0 -I0

4.62500 × 10 -II

5.00000 x 10-12

0

0

0

0

0

0

0

0

0

0

0

0
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TABLE 28.- COMPARISON OF RESULTS FOR THE SQUARE CAVITY

FOR R = 10

(a) Vorticity at center of moving wall

Calculation method Points Vorticity at center
of moving wall

Spline

Finite difference

Finite difference, divergence form

15 × 15

15 × 15

15 × 15

5.8884

5.9264

5.9129

(b) Maximum stream function

Calculation method

Spline

Finite difference

Finite difference, divergence form

Points

15 × 15

15 × 15

15 × 15

Maximum
stream function

-0.10027

-.09790

-.09805
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TABLE 33.- COMPARISON OF RESULTS FOR THE 2 × 1 RECTANGULAR

CAVITY FOR R = 100

(a) Vorticity at center of moving wall

Calculation method

Spline

Finite difference, divergence form

Points Vo rticity

29 x 15 7.1603

33 x 17 7.3929

(b) Upper vortex maximum stream function

Calculation method

Spline

Finite difference, divergence form

Reference 8

Points

29x 15

33 × 17

21 × 21

Upper -vortex
maximum

stream function

-0.10625

-.99286

-. 10204

(c) Lower vortex maximum stream function

Calculation method

Spline

Finite difference, divergence form

Reference 8

Points

29× 15

33 × 17

21 × 21

Lower -vortex
maximum

stream function

0.00094

.00059

.00062
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I.O( _ \\

_\ Exact solution

• 8 - _ 0 Implicit spline solution

\
• 6 divergence finite-difference solution

.4

.2

1 I I ] I 1 __

-1.2 -1.0 -.8 -.6 -.4 -.2 0 ._fl / .4 .6 .8 1.0 1.2

Figure 1.- Comparison of implicit spline and nondivergence finite-difference solutions

with the exact solution to Burgers' equation for 51 points, u = 1/24, equal spacing,

and a=0.

1.0_

.8

.6

.4

Exact solution

2-Step spline solution (nondivergence)

o O 0

<>

I 1 I
-1.0 -.8 -.6 -.4 -.2 0 .2 .4

77

o ! t
-1.2 .6 .8 1.0 1.2

Figure 2.- Comparison of two-step Spline solution with the exact solution to Burgers'

equation for 51 points, u = 1/24, equal spacing, and cr = 0.

79



1.0 --

.8

.4

.2 --

0

-1.2

_ o

:l [ I

-I.0 -,8 -.6

Exact solution

O 2-Step spline solution

-.4 -.2 0 ,2 .4 .6 .8 1.0 1.2

Figure 3.- Comparison of two-step spline solution with the exact solution to Burgers'

equation for 51 points, v = 1/24, equal spacing, and cr = 0.
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.2_

O'

-1.2

,9 - ,9 0

Exact solution

plicit spline solution

-I.0 -.8 -,6 -.4 -.2 0 .2 .4 .6 .8 1.0 1.2

Figure 4.- Comparison of implicit spline solution with the exact solution to Burgers'

equation for 51 points, v = 1/24, equal spacing, and _ = 5.
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1.0 0

.8 m

.6 --

.4 --

,2 --

I
0-1.2 -1.0

O_ _ Exact solution

0 Implicit spline solution (more

ear boundaries)

I I I I I I"_--Lc I o I & I
-.8 -.6 -.4 -.2 0 .2 .4 .6 ,8 1.0 1.2

Figure 5.- Comparison of implicit spline solution with the exact solution to Burgers'

equation for 37 points, v = 1/24, unequal spacing - more points near boundaries,

and _ = 0.

1.0 , 0 0

.8--

,6--

,4 --

.2 --

o I ..... I _ t d --]
-1.2 -I.0 -.8 -.6 .8 1.0 1,2

D--,-.,_,, _-Exact solution
0 Implicit spline solution (more

!

-.4 -.2 0 ,2 .4 .6

7?

Figure 6.- Comparison of implicit spline solution with the exact solution to Burgers'

equation for 37 points, v = 1/24, unequal spacing - more points in corner region,

and a = 0.

81



1.0 0 0
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O'
-1.2

- Exact solution

Implicit spline solution

[ I I I I I t _ Io I ol I
-1.0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0 1.2

Figure 7.- Comparison of implicit spline solution with the exact solution to Burgers'

equation for 31 points, v = 1/24, unequal spacing ei = 1.5, and _ = 0.
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2-Step spline solution
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-1.0 -.8 -.6 -.4 -.2 0 .2 .4 v .6 v .8 vl.O
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I
1.2

Figure 8.- Comparison of two-step spline solution with the exact solution to Burgers'

equation for 31 points, v = 1/24, unequal spacing (_i = 1.5, and _ = 0.
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1.0
(,> <2 -- Exact solution

Small oscillations near boundar 2-Step spline solution

•8 --

• 6 --

.4 --

,2 -- Small oscillations near boundary

_IP.-

o I I I I I I t "-a_ ol _ I I
-1.2 -I.0 -.8 -.6 -,4 -.2 0 .2 .4 .6 .8 1.0 1.2

Figure 9.- Comparison of two-step spline solution with the exact solution to Burgers'

equation for 19 p'oints, u = 1/24, unequal spacing _i = 1.5, and e = 0.

1.0

.8

.6

..___ O
Small oscillations near boundary

.4

.2 --

0 I I I
-1.2 -1.0 -.8 -.6

Exact solution

2-Step spline solution

Small oscillations near boundary

I _2 I ! Vl

-.4 -.2 0 .2 .4 .6 .8 1.0 1.2

Figure 10.- Comparison of two-step spline solution with the exact solution to Burgers'

equation for 19 points, v = 1/24, unequal spacing cri = 2, and _ = 5.

83



1.0 0
Exact solution

Implicit spline SolutionO

0 I I I o I I o 1 I
-1.2 -I.0 -.8 -.6 1.2-.4 -.2 0 .2 ".4 . .6 .8 1.0

Figure 11.- Comparison of implicit spline solution with the exact solution to Burgers'

equation for 19 points, u = 1/24, unequal spacing ei = 1.75, and e.= 5.
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{9 _ Exact solution

Small oscillations near boundar Implicit spline solution
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,6_

.2 _ _ Small oscillations near boundary

l [ I I I I I"_ 5 l I I
-1.2 -i.0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0 1.2

Figure 12.- Comparison of implicit spline solution with the exact solution to Burgers'

equation for 19 points, v = 1/24, unequal spacing cri = 2, and cr = 5.

r

i

F

r

t

84

, _iiil



1.C

.4 m

-1.2

O

Exact solution

t spline solution

I I I I I J f "---_ I ol I I
-1.0 -'.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0 1.2

Figure 13.- Comparison of implicit spline solution with the exact solution to Burgers'

equation for 15 points, v = 1/24, unequal spacing ei = 1.5, and a = 4.5.
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Exact solution

it spline solution

I I I I "---Q_ l ol
-.4 -.2 0 .2 .4 .6 .8

77

Figure 14.- Comparison of implicit spline solution with'the exact solution to Burgers'

equation for 15 points, v = 1/24, unequal spacing a i = 1.5, and cr = 7.5.
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1.0 _ _/ _ Exact solution

2% 2-Step spline solution
Small oscillations near boundary "v'

.8

,6 --

U

.4 --

,2 --

Small oscillations near boundary

o I I I v t I#. 1 I
-1.2 -1,0 -.8 -.6 -.4 -.2 0 .2 .4 ,6 .8 1.0 1.2

Figure 15.- Comparison of two-step spline solution with the exact solution to Burgers'

equation for 15 points, u = 1/'24, unequal spacing (_i = 1.75, e = 0, and -3 _ rl _ 3.

1.0

.8--

.6--

.4--
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O_ Exact solution

it spline solution

1 l I I Y "-----.A e, 1 I o
-1.2 -1.0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0 1.2

77

O

I I I I

Figure 16.- Comparison of implicit spline solution with the exact solution to Burgers'

equation for 15 points, _, = 1/24, unequal spacing cri = 1.75, and g = 5.
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1.0
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O

Small oscillations near boundary
Exact solution

0 Implicit spline solution

Small oscillations near boundary

I I I I

0-1.2 -1.0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0 1.2

Figure 17.- Comparison of implicit spline solution with the exact solution to Burgers'

equation for 15 pdints, v = 1/24, unequal spacing _i = 2, and cr = 5.
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.... into plane of figure
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Figure 18.- Comparison of the SADI solution with the exact solution to the two-

dimensional diffusion equation. R = 1000; At = 9 × 10-3; 17 × 17 grid;

unequal spacing; 0 _-<Y,Z < 4=
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// Spline, 15 x 15 points
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Figure 20.- Comparison of calculated velocity u through point of maximum _ for

R = 10. (Note: Nondivergence form results are virtually identical to divergence

form. )
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Figure 21.- Comparison of calculated velocity

for R = 100.
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Spline, 29 x 15 points

Divergence Form
Finite Difference, 33 x 17 points
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Figure 22.- Comparison of calculated velocity

for

u through upper point of maximum

R = 100 and 2 × 1 rectangular cavity.
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